Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
J Gen Physiol ; 156(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38652099

RESUMO

The selectivity filter of K+ channels catalyzes a rapid and highly selective transport of K+ while serving as a gate. To understand the control of this filter gate, we use the pore-only K+ channel KcvNTS in which gating is exclusively determined by the activity of the filter gate. It has been previously shown that a mutation at the C-terminus of the pore-helix (S42T) increases K+ permeability and introduces distinct voltage-dependent and K+-sensitive channel closures at depolarizing voltages. Here, we report that the latter are not generated by intrinsic conformational changes of the filter gate but by a voltage-dependent block caused by nanomolar trace contaminations of Ba2+ in the KCl solution. Channel closures can be alleviated by extreme positive voltages and they can be completely abolished by the high-affinity Ba2+ chelator 18C6TA. By contrast, the same channel closures can be augmented by adding Ba2+ at submicromolar concentrations to the cytosolic buffer. These data suggest that a conservative exchange of Ser for Thr in a crucial position of the filter gate increases the affinity of the filter for Ba2+ by >200-fold at positive voltages. While Ba2+ ions apparently remain only for a short time in the filter-binding sites of the WT channel before passing the pore, they remain much longer in the mutant channel. Our findings suggest that the dwell times of permeating and blocking ions in the filter-binding sites are tightly controlled by interactions between the pore-helix and the selectivity filter.


Assuntos
Bário , Ativação do Canal Iônico , Animais , Bário/farmacologia , Bário/metabolismo , Mutação , Canais de Potássio/metabolismo , Canais de Potássio/genética , Humanos , Potássio/metabolismo
2.
Nat Commun ; 15(1): 843, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287019

RESUMO

Binding of cAMP to Hyperpolarization activated cyclic nucleotide gated (HCN) channels facilitates pore opening. It is unclear why the isolated cyclic nucleotide binding domain (CNBD) displays in vitro lower affinity for cAMP than the full-length channel in patch experiments. Here we show that HCN are endowed with an affinity switch for cAMP. Alpha helices D and E, downstream of the cyclic nucleotide binding domain (CNBD), bind to and stabilize the holo CNBD in a high affinity state. These helices increase by 30-fold cAMP efficacy and affinity measured in patch clamp and ITC, respectively. We further show that helices D and E regulate affinity by interacting with helix C of the CNBD, similarly to the regulatory protein TRIP8b. Our results uncover an intramolecular mechanism whereby changes in binding affinity, rather than changes in cAMP concentration, can modulate HCN channels, adding another layer to the complex regulation of their activity.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico/fisiologia , Conformação Proteica em alfa-Hélice , Nucleotídeos Cíclicos , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/metabolismo
3.
Traffic ; 24(11): 533-545, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37578147

RESUMO

When the K+ channel-like protein Kesv from Ectocarpus siliculosus virus 1 is heterologously expressed in mammalian cells, it is sorted to the mitochondria. This targeting can be redirected to the endoplasmic reticulum (ER) by altering the codon usage in distinct regions of the gene or by inserting a triplet of hydrophobic amino acids (AAs) into the protein's C-terminal transmembrane domain (ct-TMD). Systematic variations in the flavor of the inserted AAs and/or its codon usage show that a positive charge in the inserted AA triplet alone serves as strong signal for mitochondria sorting. In cases of neutral AA triplets, mitochondria sorting are favored by a combination of hydrophilic AAs and rarely used codons; sorting to the ER exhibits the inverse dependency. This propensity for ER sorting is particularly high when a common codon follows a rarer one in the AA triplet; mitochondria sorting in contrast is supported by codon uniformity. Since parameters like positive charge, hydrophobic AAs, and common codons are known to facilitate elongation of nascent proteins in the ribosome the data suggest a mechanism in which local changes in elongation velocity and co-translational folding in the ct-TMD influence intracellular protein sorting.


Assuntos
Uso do Códon , Proteínas , Animais , Proteínas/metabolismo , Mitocôndrias/metabolismo , Transporte Proteico , Retículo Endoplasmático/metabolismo , Códon/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Mamíferos/genética , Mamíferos/metabolismo
4.
J Gen Physiol ; 155(10)2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37523352

RESUMO

Hyperpolarization-activated cyclic-nucleotide gated (HCN) channels are important for timing biological processes like heartbeat and neuronal firing. Their weak cation selectivity is determined by a filter domain with only two binding sites for K+ and one for Na+. The latter acts as a weak blocker, which is released in combination with a dynamic widening of the filter by K+ ions, giving rise to a mixed K+/Na+ current. Here, we apply molecular dynamics simulations to systematically investigate the interactions of five alkali metal cations with the filter of the open HCN4 pore. Simulations recapitulate experimental data like a low Li+ permeability, considerable Rb+ conductance, a block by Cs+ as well as a punch through of Cs+ ions at high negative voltages. Differential binding of the cation species in specific filter sites is associated with structural adaptations of filter residues. This gives rise to ion coordination by a cation-characteristic number of oxygen atoms from the filter backbone and solvent. This ion/protein interplay prevents Li+, but not Na+, from entry into and further passage through the filter. The site equivalent to S3 in K+ channels emerges as a preferential binding and presumably blocking site for Cs+. Collectively, the data suggest that the weak cation selectivity of HCN channels and their block by Cs+ are determined by restrained cation-generated rearrangements of flexible filter residues.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Metais Alcalinos , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Metais Alcalinos/metabolismo , Cátions/metabolismo , Sítios de Ligação , Sódio/metabolismo , Potássio/metabolismo
5.
PLoS One ; 18(4): e0280711, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37053213

RESUMO

Channelrhodopsin 2 (ChR2) and its variants are the most frequent tools for remote manipulation of electrical properties in cells via light. Ongoing attempts try to enlarge their functional spectrum with respect to ion selectivity, light sensitivity and protein trafficking by mutations, protein engineering and environmental mining of ChR2 variants. A shortcoming in the required functional testing of large numbers of ChR2 variants is the lack of an easy screening system. Baker's yeast, which was successfully employed for testing ion channels from eukaryotes has not yet been used for screening of ChR2s, because they neither produce the retinal chromophore nor its precursor carotenoids. We found that addition of retinal to the external medium was not sufficient for detecting robust ChR activity in yeast in simple growth assays. This obstacle was overcome by metabolic engineering of a yeast strain, which constitutively produces retinal. In proof of concept experiments we functionally express different ChR variants in these cells and monitor their blue light induced activity in simple growth assays. We find that light activation of ChR augments an influx of Na+ with a consequent inhibition of cell growth. In a K+ uptake deficient yeast strain, growth can be rescued in selective medium by the blue light induced K+ conductance of ChR. This yeast strain can now be used as chassis for screening of new functional ChR variants and mutant libraries in simple yeast growth assays under defined selective conditions.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Channelrhodopsins/genética , Channelrhodopsins/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Engenharia Metabólica , Mutação , Fermentação
6.
Function (Oxf) ; 3(3): zqac019, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36156894

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels generate the pacemaker current which plays an important role in the timing of various biological processes like the heart beat. We used umbrella sampling to explore the potential of mean force for the conduction of potassium and sodium through the open HCN4 pore. Our data explain distinct functional features like low unitary conductance and weak selectivity as a result of high energetic barriers inside the selectivity filter of this channel. They exceed the 3-5 kJ/mol threshold which is presumed as maximal barrier for diffusion-limited conductance. Furthermore, simulations provide a thermodynamic explanation for the weak cation selectivity of HCN channels that contain only two ion binding sites in the selectivity filter (SF). We find that sodium ions bind more strongly to the SF than potassium and are easier released by binding of potassium than of another sodium. Hence ion transport and selectivity in HCN channels is not determined by the same mechanism as in potassium-selective channels; it rather relies on sodium as a weak blocker that can only be released by potassium.


Assuntos
Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Canais de Potássio , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais de Potássio/química , Cátions/metabolismo , Sítios de Ligação , Sódio/metabolismo , Potássio/química
8.
J Gen Physiol ; 154(5)2022 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-35416945

RESUMO

Radiation therapy efficiently eliminates cancer cells and reduces tumor growth. To understand collateral agonistic and antagonistic effects of this treatment on the immune system, we examined the impact of x-ray irradiation on human T cells. We find that, in a major population of leukemic Jurkat T cells and peripheral blood mononuclear cells, clinically relevant radiation doses trigger delayed oscillations of the cytosolic Ca2+ concentration. They are generated by store-operated Ca2+ entry (SOCE) following x-ray-induced clustering of Orai1 and STIM1 and formation of a Ca2+ release-activated Ca2+ (CRAC) channel. A consequence of the x-ray-triggered Ca2+ signaling cascade is translocation of the transcription factor nuclear factor of activated T cells (NFAT) from the cytosol into the nucleus, where it elicits the expression of genes required for immune activation. The data imply activation of blood immune cells by ionizing irradiation, with consequences for toxicity and therapeutic effects of radiation therapy.


Assuntos
Cálcio , Leucócitos Mononucleares , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Humanos , Imunidade , Leucócitos Mononucleares/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Linfócitos T/metabolismo , Raios X
9.
J Mol Biol ; 434(9): 167522, 2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35248543

RESUMO

Most potassium channels have two main gate locations, hosting an inner gate at the cytosolic entrance and a filter gate in the selectivity filter; the function of these gates is in many channels coupled. To obtain exclusive insights into the molecular mechanisms that determine opening and closing of the filter gate, we use a combination of single-channel recordings and gating analysis in the minimal viral channel KcvNTS. This channel has no inner gate, and its fast closing at negative voltages can therefore be entirely assigned to the filter gate. We find that mutations of S42 in the pore helix severely slow down closing of this filter gate, an effect which is not correlated with hydrogen bond formation by the amino acid at this position. Hence, different from KcsA, which contains the critical E71 in the equivalent position forming a salt bridge, the coupling between selectivity filter and surrounding structures for filter gating must in KcvNTS rely on different modes of interaction. Quantitative analysis of concatemers carrying different numbers of S42T mutations reveals that each subunit contributes the same amount of âˆ¼ 0.4 kcal/mol to the energy barrier for filter closure indicating a concerted action of the subunits. Since the mutations have neither an influence on the unitary current nor on the voltage dependency of the gate, the data stress that the high subunit cooperativity is mediated through conformational changes rather than through changes in the ion occupation in the selectivity filter.


Assuntos
Ativação do Canal Iônico , Canais de Potássio , Mutação , Canais de Potássio/química , Canais de Potássio/genética , Canais de Potássio/metabolismo , Conformação Proteica
10.
Biochem Soc Trans ; 49(6): 2573-2579, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34812892

RESUMO

Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are primarily activated by voltage and further modulated by cAMP. While cAMP binding alone does not open the channel, its presence facilitates the action of voltage, increasing channel open probability. Functional results indicate that the membrane-based voltage sensor domain (VSD) communicates with the cytosolic cyclic nucleotide-binding domain (CNBD), and vice-versa. Yet, a mechanistic explanation on how this could occur in structural terms is still lacking. In this review, we will discuss the recent advancement in understanding the molecular mechanisms connecting the VSD with the CNBD in the tetrameric organization of HCN channels unveiled by the 3D structures of HCN1 and HCN4. Data show that the HCN domain transmits cAMP signal to the VSD by bridging the cytosolic to the membrane domains. Furthermore, a metal ion coordination site connects the C-linker to the S4-S5 linker in HCN4, further facilitating cAMP signal transmission to the VSD in this isoform.


Assuntos
AMP Cíclico/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Animais , Membrana Celular/metabolismo , Citosol/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Transdução de Sinais , Relação Estrutura-Atividade
11.
Front Physiol ; 12: 737834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34777005

RESUMO

Modulating the activity of ion channels by blockers yields information on both the mode of drug action and on the biophysics of ion transport. Here we investigate the interplay between ions in the selectivity filter (SF) of K+ channels and the release kinetics of the blocker tetrapropylammonium in the model channel KcvNTS. A quantitative expression calculates blocker release rate constants directly from voltage-dependent ion occupation probabilities in the SF. The latter are obtained by a kinetic model of single-channel currents recorded in the absence of the blocker. The resulting model contains only two adjustable parameters of ion-blocker interaction and holds for both symmetric and asymmetric ionic conditions. This data-derived model is corroborated by 3D reference interaction site model (3D RISM) calculations on several model systems, which show that the K+ occupation probability is unaffected by the blocker, a direct consequence of the strength of the ion-carbonyl attraction in the SF, independent of the specific protein background. Hence, KcvNTS channel blocker release kinetics can be reduced to a small number of system-specific parameters. The pore-independent asymmetric interplay between K+ and blocker ions potentially allows for generalizing these results to similar potassium channels.

12.
Biophys Rep (N Y) ; 1(1): None, 2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34568862

RESUMO

Voltage-dependent anion-selective channel (VDAC) is one of the main proteins of the outer mitochondrial membrane of all eukaryotes, where it forms aqueous, voltage-sensitive, and ion-selective channels. Its electrophysiological properties have been thoroughly analyzed with the planar lipid bilayer technique. To date, however, available results are based on isolations of VDACs from tissue or from recombinant VDACs produced in bacterial systems. It is well known that the cytosolic overexpression of highly hydrophobic membrane proteins often results in the formation of inclusion bodies containing insoluble aggregates. Purification of properly folded proteins and restoration of their full biological activity requires several procedures that considerably lengthen experimental times. To overcome these restraints, we propose a one-step reaction that combines in vitro cell-free protein expression with nanodisc technology to obtain human VDAC isoforms directly integrated in a native-like lipid bilayer. Reconstitution assays into artificial membranes confirm the reliability of this new methodological approach and provide results comparable to those of VDACs prepared with traditional protein isolation and reconstitution protocols. The use of membrane-mimicking nanodisc systems represents a breakthrough in VDAC electrophysiology and may be adopted to further structural studies.

13.
Mol Cell ; 81(14): 2929-2943.e6, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34166608

RESUMO

The HCN1-4 channel family is responsible for the hyperpolarization-activated cation current If/Ih that controls automaticity in cardiac and neuronal pacemaker cells. We present cryoelectron microscopy (cryo-EM) structures of HCN4 in the presence or absence of bound cAMP, displaying the pore domain in closed and open conformations. Analysis of cAMP-bound and -unbound structures sheds light on how ligand-induced transitions in the channel cytosolic portion mediate the effect of cAMP on channel gating and highlights the regulatory role of a Mg2+ coordination site formed between the C-linker and the S4-S5 linker. Comparison of open/closed pore states shows that the cytosolic gate opens through concerted movements of the S5 and S6 transmembrane helices. Furthermore, in combination with molecular dynamics analyses, the open pore structures provide insights into the mechanisms of K+/Na+ permeation. Our results contribute mechanistic understanding on HCN channel gating, cyclic nucleotide-dependent modulation, and ion permeation.


Assuntos
Permeabilidade da Membrana Celular/fisiologia , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Ativação do Canal Iônico/fisiologia , Íons/metabolismo , Proteínas Musculares/metabolismo , Canais de Potássio/metabolismo , Linhagem Celular , Microscopia Crioeletrônica/métodos , AMP Cíclico/metabolismo , Células HEK293 , Humanos
14.
Cells ; 10(5)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-34066987

RESUMO

Due to the redundancy of the genetic code most amino acids are encoded by multiple synonymous codons. It has been proposed that a biased frequency of synonymous codons can affect the function of proteins by modulating distinct steps in transcription, translation and folding. Here, we use two similar prototype K+ channels as model systems to examine whether codon choice has an impact on protein sorting. By monitoring transient expression of GFP-tagged channels in mammalian cells, we find that one of the two channels is sorted in a codon and cell cycle-dependent manner either to mitochondria or the secretory pathway. The data establish that a gene with either rare or frequent codons serves, together with a cell-state-dependent decoding mechanism, as a secondary code for sorting intracellular membrane proteins.


Assuntos
Uso do Códon , Código Genético , Canais de Potássio/genética , Biossíntese de Proteínas , Humanos , Canais de Potássio/metabolismo , Transporte Proteico
15.
Methods Enzymol ; 652: 293-318, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34059286

RESUMO

Experimental studies on membrane proteins have been recently enriched by two promising method developments: protocols for cell-free protein synthesis and the use of soluble nanoscale lipid bilayers, so called nanodiscs, as membrane mimics for keeping these proteins in a soluble form. Here, we show how the advantages of these techniques can be combined with the classical planar lipid bilayer method for a functional reconstitution of channel activity. The present data demonstrate that the combination of these methods offers a very rapid and reliable way of recording channel activity in different bilayer systems. This approach has additional advantages in that it strongly lowers the propensity of contamination from the expression system and allows the simultaneous reconstitution of thousands of channel proteins for macroscopic current measurements without compromising bilayer stability.


Assuntos
Bicamadas Lipídicas , Proteínas de Membrana , Proteínas de Membrana/genética , Nanotecnologia
16.
Eur Biophys J ; 50(1): 37-57, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33523249

RESUMO

Coarse-grained protein models approximate the first-principle physical potentials. Among those modeling approaches, the relative entropy framework yields promising and physically sound results, in which a mapping from the target protein structure and dynamics to a model is defined and subsequently adjusted by an entropy minimization of the model parameters. Minimization of the relative entropy is equivalent to maximization of the likelihood of reproduction of (configurational ensemble) observations by the model. In this study, we extend the relative entropy minimization procedure beyond parameter fitting by a second optimization level, which identifies the optimal mapping to a (dimension-reduced) topology. We consider anisotropic network models of a diverse set of ion channels and assess our findings by comparison to experimental results.


Assuntos
Entropia , Canais Iônicos/metabolismo , Modelos Biológicos , Porosidade
17.
J Gen Physiol ; 153(2)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33439243

RESUMO

It has become increasingly apparent that the lipid composition of cell membranes affects the function of transmembrane proteins such as ion channels. Here, we leverage the structural and functional diversity of small viral K+ channels to systematically examine the impact of bilayer composition on the pore module of single K+ channels. In vitro-synthesized channels were reconstituted into phosphatidylcholine bilayers ± cholesterol or anionic phospholipids (aPLs). Single-channel recordings revealed that a saturating concentration of 30% cholesterol had only minor and protein-specific effects on unitary conductance and gating. This indicates that channels have effective strategies for avoiding structural impacts of hydrophobic mismatches between proteins and the surrounding bilayer. In all seven channels tested, aPLs augmented the unitary conductance, suggesting that this is a general effect of negatively charged phospholipids on channel function. For one channel, we determined an effective half-maximal concentration of 15% phosphatidylserine, a value within the physiological range of aPL concentrations. The different sensitivity of two channel proteins to aPLs could be explained by the presence/absence of cationic amino acids at the interface between the lipid headgroups and the transmembrane domains. aPLs also affected gating in some channels, indicating that conductance and gating are uncoupled phenomena and that the impact of aPLs on gating is protein specific. In two channels, the latter can be explained by the altered orientation of the pore-lining transmembrane helix that prevents flipping of a phenylalanine side chain into the ion permeation pathway for long channel closings. Experiments with asymmetrical bilayers showed that this effect is leaflet specific and most effective in the inner leaflet, in which aPLs are normally present in plasma membranes. The data underscore a general positive effect of aPLs on the conductance of K+ channels and a potential interaction of their negative headgroup with cationic amino acids in their vicinity.


Assuntos
Bicamadas Lipídicas , Fosfolipídeos , Canais Iônicos , Fosfatidilserinas
18.
BMC Med Genet ; 21(1): 227, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33213388

RESUMO

BACKGROUND: Alterations in the SCN5A gene encoding the cardiac sodium channel Nav1.5 have been linked to a number of arrhythmia syndromes and diseases including long-QT syndrome (LQTS), Brugada syndrome (BrS) and dilative cardiomyopathy (DCM), which may predispose to fatal arrhythmias and sudden death. We identified the heterozygous variant c.316A > G, p.(Ser106Gly) in a 35-year-old patient with survived cardiac arrest. In the present study, we aimed to investigate the functional impact of the variant to clarify the medical relevance. METHODS: Mutant as well as wild type GFP tagged Nav1.5 channels were expressed in HEK293 cells. We performed functional characterization experiments using patch-clamp technique. RESULTS: Electrophysiological measurements indicated, that the detected missense variant alters Nav1.5 channel functionality leading to a gain-of-function effect. Cells expressing S106G channels show an increase in Nav1.5 current over the entire voltage window. CONCLUSION: The results support the assumption that the detected sequence aberration alters Nav1.5 channel function and may predispose to cardiac arrhythmias and sudden cardiac death.


Assuntos
Arritmias Cardíacas/genética , Mutação com Ganho de Função , Parada Cardíaca/genética , Mutação de Sentido Incorreto , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Potenciais de Ação/genética , Adulto , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patologia , Expressão Gênica , Células HEK293 , Parada Cardíaca/metabolismo , Parada Cardíaca/patologia , Humanos , Masculino , Mutagênese Sítio-Dirigida , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Sobreviventes , Transfecção
19.
Cells ; 9(11)2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-33228123

RESUMO

The inner membranes of mitochondria contain several types of K+ channels, which modulate the membrane potential of the organelle and contribute in this way to cytoprotection and the regulation of cell death. To better study the causal relationship between K+ channel activity and physiological changes, we developed an optogenetic platform for a light-triggered modulation of K+ conductance in mitochondria. By using the light-sensitive interaction between cryptochrome 2 and the regulatory protein CIB1, we can trigger the transcription of a small and highly selective K+ channel, which is in mammalian cells targeted into the inner membrane of mitochondria. After exposing cells to very low intensities (≤0.16 mW/mm2) of blue light, the channel protein is detectable as an accumulation of its green fluorescent protein (GFP) tag in the mitochondria less than 1 h after stimulation. This system allows for an in vivo monitoring of crucial physiological parameters of mitochondria, showing that the presence of an active K+ channel causes a substantial depolarization compatible with the effect of an uncoupler. Elevated K+ conductance also results in a decrease in the Ca2+ concentration in the mitochondria but has no impact on apoptosis.


Assuntos
Potenciais da Membrana/fisiologia , Mitocôndrias/metabolismo , Canais de Potássio/metabolismo , Humanos
20.
Viruses ; 12(10)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003637

RESUMO

Potassium ion (K+) channels have been observed in diverse viruses that infect eukaryotic marine and freshwater algae. However, experimental evidence for functional K+ channels among these alga-infecting viruses has thus far been restricted to members of the family Phycodnaviridae, which are large, double-stranded DNA viruses within the phylum Nucleocytoviricota. Recent sequencing projects revealed that alga-infecting members of Mimiviridae, another family within this phylum, may also contain genes encoding K+ channels. Here we examine the structural features and the functional properties of putative K+ channels from four cultivated members of Mimiviridae. While all four proteins contain variations of the conserved selectivity filter sequence of K+ channels, structural prediction algorithms suggest that only two of them have the required number and position of two transmembrane domains that are present in all K+ channels. After in vitro translation and reconstitution of the four proteins in planar lipid bilayers, we confirmed that one of them, a 79 amino acid protein from the virus Tetraselmis virus 1 (TetV-1), forms a functional ion channel with a distinct selectivity for K+ over Na+ and a sensitivity to Ba2+. Thus, virus-encoded K+ channels are not limited to Phycodnaviridae but also occur in the members of Mimiviridae. The large sequence diversity among the viral K+ channels implies multiple events of lateral gene transfer.


Assuntos
Mimiviridae/fisiologia , Canais de Potássio/fisiologia , Potássio/metabolismo , Vírus não Classificados/fisiologia , Sequência de Aminoácidos , Evolução Molecular , Genoma Viral , Canais Iônicos , Bicamadas Lipídicas , Mimiviridae/genética , Phycodnaviridae/genética , Filogenia , Canais de Potássio/classificação , Canais de Potássio/genética , Alinhamento de Sequência , Análise de Sequência , Sódio/metabolismo , Canais de Sódio , Vírus não Classificados/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...